2/3x^2+5=47

Simple and best practice solution for 2/3x^2+5=47 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x^2+5=47 equation:



2/3x^2+5=47
We move all terms to the left:
2/3x^2+5-(47)=0
Domain of the equation: 3x^2!=0
x^2!=0/3
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x^2-42=0
We multiply all the terms by the denominator
-42*3x^2+2=0
Wy multiply elements
-126x^2+2=0
a = -126; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-126)·2
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{7}}{2*-126}=\frac{0-12\sqrt{7}}{-252} =-\frac{12\sqrt{7}}{-252} =-\frac{\sqrt{7}}{-21} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{7}}{2*-126}=\frac{0+12\sqrt{7}}{-252} =\frac{12\sqrt{7}}{-252} =\frac{\sqrt{7}}{-21} $

See similar equations:

| T(t)=3(t–5)3. | | 3x=4-13 | | 4x=-17+5 | | 4-h=20 | | 7x–3x–5=–17 | | (x–7)(x+3)+(x–1)(x+5)=102 | | 4×h=20 | | 13x-24=48+9x | | 15=21-2f | | 3x-2.5x-1.5=2.5x-2x-1.5 | | (2x)^2+(3x)^2=39x | | 6(2+p)=21 | | 6(2+p)=1 | | 45x+19=24x+14= | | 3x+3/2x=10 | | x+x+x-x=8 | | 2f-5=20 | | a=125-48/Δ0.06 | | a=125-48/0.06 | | 4m=2.8 | | m=1.12 | | 2x+8/5+4=7 | | 3(x+3)=2(12-x) | | 3x-14=-3x | | 9–3b=2b–21 | | (7-8+1)x=3 | | (x-2)(2x+7)=2x2-3x | | 17x+12=24x-16 | | 17x-117=5x+9 | | 12x+21-5x+1=6x+30 | | 7x-74=31 | | 22n-1=512 |

Equations solver categories